Basic BigARTM tutorial for Windows users

This tutorial gives guidelines for installing and running existing BigARTM examples via command-line interface and from Python environment.


Download latest binary distribution of BigARTM from Explicit download links can be found at Downloads section (for 32 bit and 64 bit configurations).

The distribution will contain pre-build binaries, command-line interface and BigARTM API for Python. The distribution also contains a simple dataset and few python examples that we will be running in this tutorial. More datasets in BigARTM-compatible format are available in the Downloads section.

Refer to Windows distribution for details about other files, included in the binary distribution package.

Running BigARTM from command line

No installation steps are required to run BigARTM from command line. After unpacking binary distribution simply open command prompt (cmd.exe), change current directory to bin folder inside BigARTM package, and run cpp_client.exe application as in the following example. As an optional step, we recommend to add bin folder of the BigARTM distribution to your PATH system variable.

>C:\BigARTM\bin>set PATH=%PATH%;C:\BigARTM\bin
>C:\BigARTM\bin>cpp_client.exe -v ../python/examples/vocab.kos.txt -d ../python/examples/docword.kos.txt -t 4
Parsing text collection... OK.
Iteration 1 took  197 milliseconds.
    Test perplexity = 7108.35,
    Train perplexity = 7106.18,
    Test spatsity theta = 0,
    Train sparsity theta = 0,
    Spatsity phi = 0.000144802,
    Test items processed = 343,
    Train items processed = 3087,
    Kernel size = 5663,
    Kernel purity = 0.958901,
    Kernel contrast = 0.292389
Iteration 2 took  195 milliseconds.
    Test perplexity = 2563.31,
    Train perplexity = 2517.07,
    Test spatsity theta = 0,
    Train sparsity theta = 0,
    Spatsity phi = 0.000144802,
    Test items processed = 343,
    Train items processed = 3087,
    Kernel size = 5559.5,
    Kernel purity = 0.956709,
    Kernel contrast = 0.298198
#1: november(0.054) poll(0.015) bush(0.013) kerry(0.012) polls(0.012) governor(0.011)
#2: bush(0.0083) president(0.0059) republicans(0.0047) house(0.0042) people(0.0039) administration(0.0036)
#3: bush(0.031) iraq(0.018) war(0.012) kerry(0.0096) president(0.0078) administration(0.0076)
#4: kerry(0.018) democratic(0.013) dean(0.012) campaign(0.0097) poll(0.0095) race(0.0082)
ThetaMatrix (last 7 processed documents, ids = 1995,1996,1997,1998,1992,2000,1994):
Topic0: 0.02104 0.02155 0.00604 0.00835 0.00965 0.00006 0.91716
Topic1: 0.15441 0.76643 0.06484 0.11643 0.20409 0.00006 0.00957
Topic2: 0.00399 0.16135 0.00093 0.03890 0.10498 0.00001 0.00037
Topic3: 0.82055 0.05066 0.92819 0.83632 0.68128 0.99987 0.07289

We recommend to download larger datasets, available in Downloads section. All docword and vocab files can be consumed by BigARTM exactly as in the previous example.

Internally BigARTM always parses such files into batches format (for example, enron_1k (7.1 MB)). If you have downloaded such pre-parsed collection, you may feed it into BigARTM as follows:

>C:\BigARTM\bin>cpp_client.exe --batch_folder C:\BigARTM\enron
Reuse 40 batches in folder 'enron'
Loading dictionary file... OK.
Iteration 1 took  2502 milliseconds.

For more information about cpp_client.exe refer to BigARTM command line utility section.

Configure BigARTM Python API

  1. Install Python, for example from the following links:

    Remember that the version of BigARTM package must match your version Python installed on your machine. If you have 32 bit operating system then you must select 32 bit for Python and BigARTM package. If you have 64 bit operating system then you are free to select either version. However, please note that memory usage of 32 bit processes is limited by 2 GB. For this reason we recommend to select 64 bit configurations.

    Also you need to have several Python libraries to be installed on your machine:

    • numpy >= 1.9.2
    • scipy >= 0.15.0
    • pandas >= 0.16.2
    • scikit-learn >= 0.16.1
  2. Add C:\BigARTM\bin folder to your PATH system variable, and add C:\BigARTM\python to your PYTHONPATH system variable:

    set PATH=%PATH%;C:\BigARTM\bin
    set PATH=%PATH%;C:\Python27;C:\Python27\Scripts

    Remember to change C:\BigARTM and C:\Python27 with your local folders.

  3. Setup Google Protocol Buffers library, included in the BigARTM release package.

    • Copy C:\BigARTM\bin\protoc.exe file into C:\BigARTM\protobuf\src folder
    • Run the following commands from command prompt
    cd C:\BigARTM\protobuf\Python
    python build
    python install

    Avoid python test step, as it produces several confusing errors. Those errors are harmless. For further details about protobuf installation refer to protobuf/python/README.

Running BigARTM from Python API

Refer to ARTM notebook (in Russian or in English), which describes high-level Python API of BigARTM.